

Features

- Trench & Field Stop technology
 - -Low saturation voltage
 - -10µs Short Circuit current -Low turn-off losses

 - -Positive temperature coefficient
- Free wheeling diodes with fast and soft reverse recovery
- Industrial standard package with copper base plate
- · Low switching losses

Applications

- High frequency switching application
- Medical applications
- Motion/servo control
- UPS systems

IGBT-inverter ABSOLUTE MAXIMUM RATINGS(T C =25°C unless otherwise specified)

Symbol	Parameter/Test Conditions		Values	Unit	
V _{CES}	Collector Emitter Voltage	T_=25℃	1200		
V_{GES}	Gate Emitter Voltage		±20	V	
lc	DC Collector Current	Tc=25℃, T _{Jmax} =175℃	630		
		Tc=90℃, T _{Jmax} =175℃	450	Α	
I _{CM}	Repetitive Peak Collector Current	tp=1ms	900		
P _{tot}	Power Dissipation Per IGBT	T _C =25℃, T _{Jmax} =175℃	2143	W	

Diode -inverter

ABSOLUTE MAXIMUM RATINGS(T C =25°C unless otherwise specified)

Symbol	Parameter/Test Conditions		Values	Unit
V _{RRM}	Repetitive Reverse Voltage	TJ=25℃	1200	V
I _{F(AV)}	Average Forward Current		400	Δ
I _{FRM}	Repetitive Peak Forward Current	tp=1ms	800	
l ² t		T _J =125℃, t=10ms, V _R =0V	39.2	KA ² S

IGBT-inverter

ELECTRICAL CHARACTERISTICS (T C =25°C unless otherwise specified)

Symbol	Parameter/Test Conditions			Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Emitter Threshold Voltage	V _{CE} =V _{GE} , I _C	5.0	6.0	7.0		
V _{CE(sat)}	Collector - Emitter Saturation Voltage	Ic=450A, V _{GE} =15V, TJ=25℃			1.65	2.10	V
		Ic=450A, V _{GE} =15V, TJ=125℃			2.10		
		Ic=450A, VGE=15	6V, TJ=150℃		2.20		1
		V _{CE} =1200V, V _{GE} =	=0V, T」=25 ℃			1	
I _{CES}	Collector Leakage Current	V _{CE} =1200V, V _{GE} =	Vce=1200V, Vge=0V, TJ=150℃			10	μA
I _{GES}	Gate Leakage Current	V _{CE} =0V,V _{GE} =±2	0V, TJ=25℃	-400		500	nA
R _{gint}	Integrated Gate Resistor				1.4		Ω
Qg	Gate Charge	Vce=600V, Ic=450	0A , V _{GE} =15V		2.25		μC
C _{ies}	Input Capacitance				31.5		nF
C _{res}	Reverse Transfer Capacitance	VCE=25V, VGE=U	$V_{CE}=25V$, $V_{GE}=0V$, $f=1MHZ$		1.5		nF
			T J =25 ℃		100		ns
t _{d(an)}	Turn on Delay Time		TJ=125℃		120		ns
-0(01)		Vcc=600V,Ic=450A	TJ=150℃		130		ns
	Rise Time	$R_G = 2.0\Omega,$ $V_{GE} = \pm 15V,$ Inductive Load	T J =25 ℃		78		ns
tr			TJ=125℃		86		ns
			TJ=150℃		86		ns
	Turn off Delay Time	Vcc=600V,Ic=450A R _G =2.0Ω, V _{GE} =±15V, Inductive Load	T J =25 ℃		550		ns
t _{d(off)}			TJ=125℃		590		ns
-0(01)			TJ=150℃		610		ns
	Fall Time		T J=25 ℃		120		ns
tr			TJ=125℃		200		ns
			TJ=150℃		220		ns
	Turn on Energy	Vcc=600V,Ic=450A Rg =2.00.	TJ=125℃		39		mJ
⊏ _{on}			TJ=150℃		42		mJ
	Turn off Energy	$V_{GE}=\pm 15V,$	TJ=125℃		52		mJ
⊏ _{off}		Inductive Load	TJ=150℃		56		mJ
	Short Circuit Current	tpsc≤10µS ,	V _{GE} =15V		1700		Δ
SC		T _J =125°C,V _{CC} =800V			1700		
R _{thJC}	Junction to Case Thermal R	hermal Resistance (Per IGBT)				0.07	K/W

Diode-inverter

ELECTRICAL CHARACTERISTICS (T C =25°C unless otherwise specified)

Symbol	Parameter/Test Conditions		Min.	Тур.	Max.	Unit	
VF	Forward Voltage	IF=400A , VGE=0V, TJ =25 $^\circ \!\!\! \mathrm{C}$		1.65	2.1		
		IF=400A , VGE=0V, TJ =125 $^\circ\!\!\mathrm{C}$	°C 1.4 V		V		
		I⊧=400A , V _{GE} =0V, TJ =150℃		1.35			
t _{rr}	Reverse Recovery Time	l⊧=450A , Vռ=600V dl⊧/dt=-5300A/µs TJ =150℃		530		ns	
I _{RRM}	Max. Reverse Recovery Current			485		Α	
Q _{RR}	Reverse Recovery Charge			133		μC	
E _{rec}	Reverse Recovery Energy			59.5		mJ	
R _{thJCD}	Junction to Case Thermal Resistance (Per Diode)				0.12	K/W	

GN450HF120T1SA1

MODULE CHARACTERISTICS (T C =25°C unless otherwise specified)						
Symbol	Parameter/Test Conditions		Values	Unit		
T _{Jmax}	Max. Junction Temperature		175			
T _{Jop}	Operating Temperature		-40~150	°C		
T _{stg}	Storage Temperature		-40~125			
V _{isol}	Isolation Breakdown Voltage	AC, 50Hz(R.M.S), t=1minute	3000	V		
CTI	Comparative Tracking Index		> 225			
Torque	to heatsink	Recommended (M6)	3~5	Nm		
	to terminal	Recommended (M6)	2.5~5	Nm		
Weight			305	g		

Typical Performance Characteristics

Figure 1. Typical Output Characteristics IGBT-inverter

Figure 3. Typical Transfer characteristics IGBT-inverter

Figure 5. Switching Energy vs Collector Current IGBT-inverter

Figure 2. Typical Output Characteristics IGBT-inverter

Figure 4. Switching Energy vs Gate Resistor IGBT-inverter

Figure 6. Reverse Biased Safe Operating Area IGBT-inverter

GN450HF120T1SA1

GN450HF120T1SA1

T_C(℃)

Figure 9. Diode Forward Characteristics Diode -inverter

Diode-inverter

Figure 10. Switching Energy vs Gate Resistor Diode - inverter

Rectangular Pulse Duration(S)

Mechanical Dimensions

GN450HF120T1SA1

Disclaimers

JIAEN Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to JIAEN's terms and conditions supplied at the time of order acknowledgement.

JIAEN Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent JIAEN deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

JIAEN Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using JIAEN's components. To minimize risk, customers must provide adequate design and operating safeguards.

JIAEN Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in JIAEN's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of JIAEN's products with statements different from or beyond the parameters stated by JIAEN Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated JIAEN's product or service and is unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for any such statements.